A Association Rule Mining
نویسنده
چکیده
Association Rule Mining (ARM) is concerned with how items in a transactional database are grouped together. It is commonly known as market basket analysis, because it can be likened to the analysis of items that are frequently put together in a basket by shoppers in a market. From a statistical point of view, it is a semiautomatic technique to discover correlations among a set of variables. ARM is widely used in myriad applications, including recommender systems (Lawrence, Almasi, Kotlyar, Viveros, & Duri, 2001), promotional bundling (Wang, Zhou, & Han, 2002), Customer Relationship Management (CRM) (Elliott, Scionti, & Page, 2003), and crossselling (Brijs, Swinnen, Vanhoof, & Wets, 1999). In addition, its concepts have also been integrated into other mining tasks, such as Web usage mining (Woon, Ng, & Lim, 2002), clustering (Yiu & Mamoulis, 2003), outlier detection (Woon, Li, Ng, & Lu, 2003), and classification (Dong & Li, 1999), for improved efficiency and effectiveness. CRM benefits greatly from ARM as it helps in the understanding of customer behavior (Elliott et al., 2003). Marketing managers can use association rules of products to develop joint marketing campaigns to acquire new customers. The application of ARM for the crossselling of supermarket products has been successfully attempted in many cases (Brijs et al., 1999). In one particular study involving the personalization of supermarket product recommendations, ARM has been applied with much success (Lawrence et al., 2001). Together with customer segmentation, ARM helped to increase revenue by 1.8%. In the biology domain, ARM is used to extract novel knowledge on protein-protein interactions (Oyama, Kitano, Satou, & Ito, 2002). It is also successfully applied in gene expression analysis to discover biologically relevant associations between different genes or between different environment conditions (Creighton & Hanash, 2003). BACKGROUND
منابع مشابه
Data sanitization in association rule mining based on impact factor
Data sanitization is a process that is used to promote the sharing of transactional databases among organizations and businesses, it alleviates concerns for individuals and organizations regarding the disclosure of sensitive patterns. It transforms the source database into a released database so that counterparts cannot discover the sensitive patterns and so data confidentiality is preserved ag...
متن کاملNumeric Multi-Objective Rule Mining Using Simulated Annealing Algorithm
Abstract as a single objective one. Measures like support, confidence and other interestingness criteria which are used for evaluating a rule, can be thought of as different objectives of association rule mining problem. Support count is the number of records, which satisfies all the conditions that exist in the rule. This objective represents the accuracy of the rules extracted from the da...
متن کاملOptimizing Membership Functions using Learning Automata for Fuzzy Association Rule Mining
The Transactions in web data often consist of quantitative data, suggesting that fuzzy set theory can be used to represent such data. The time spent by users on each web page is one type of web data, was regarded as a trapezoidal membership function (TMF) and can be used to evaluate user browsing behavior. The quality of mining fuzzy association rules depends on membership functions and since t...
متن کاملExploring the Relationships between Spatial and Demographic Parameters and Urban Water Consumption in Esfahan Using Association Rule Mining
In recent years, Iran has faced serious water scarcity and excessive use of water resources. Therefore, exploring the pattern of urban water consumption and the relationships between geographic and demographic parameters and water usage is an important requirement for effective management of water resources. In this study, association rule mining has been used to analyze the data of municipal w...
متن کاملNew Approaches to Analyze Gasoline Rationing
In this paper, the relation among factors in the road transportation sector from March, 2005 to March, 2011 is analyzed. Most of the previous studies have economical point of view on gasoline consumption. Here, a new approach is proposed in which different data mining techniques are used to extract meaningful relations between the aforementioned factors. The main and dependent factor is gasolin...
متن کاملAssociation rule mining application to diagnose smart power distribution system outage root cause
Smart grid has been introduced to address power distribution system challenges. In conventional power distribution systems, when a power outage happens, the maintenance team tries to find the outage cause and mitigate it. After this, some information is documented in a dataset called the outage dataset. If the team can estimate the outage cause before searching for it, the restoration time will...
متن کامل